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Abstract. Given a free Abelian groupT of finite rank, canonical subgroup matricesFM are
defined with respect to an arbitrary but fixed basis ofT, which uniquely determine all subgroups
S of T of finite index. The use of these matrices allows the classification of all subgroups of
fixed finite index. An application is made in the construction of the intersection group and the
union group of two arbitrary subgroups of finite index and upper and lower bounds on the index
of these groups are found. Physical applications occur for rank three in the systematic symmetry
analysis of domain structures, which appear in structural phase transitions in solids.

1. Introduction

Three-dimensional crystallographic space groups possess an invariant Abelian subgroup of
translations and a study of the lattice of subgroups of space groups requires the systematic
investigation of the lattice of subgroups of the translation groups. Such subgroup lattices
are of importance in the symmetry analysis of domain structures which appear in structural
phase transitions of solids which are accompanied by a symmetry reduction. Thus the space
groupH of the distorted phase is a proper subgroup of the space groupG of the parent
phase which implies thatH ⊂ G. Due to the symmetry reduction at the phase transition the
distorted phase can appear in several homogenous simultaneously co-existing states which
have the same structure but different orientations and/or locations in space when referred
to a particular coordinate system. The theoretical background of the symmetry analysis can
be found in many papers from which we mention only some, namely Janovec [1–3], Van
Tendeloo and Amelinckx [4], Kopsky [5], Zikmund [6]. The existence of software to support
domain structure symmetry analysis has been reported recently by Davieset al [7, 8]. In
these latter papers the role of intersection groups in determining the symmetry groups of
domain pairs, and of intermediate groups (related to union groups) in determining minimal
permutable sets of domain states is explained and illustrated. Here, the translation groups
are free Abelian groups of rank three but the results presented in this paper apply to
arbitrary finite rank. For the background material on infinite Abelian groups the reader is
referred to the book by Fuchs [9] and similarly for basic concepts on integral matrices and
number theory one should consult the book by Newman [10] and that by Rademacher [11],
respectively.
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2. Subgroups of free Abelian groups

2.1. Canonical subgroup matrices

Let T denote a free Abelian group of rankn and let a subgroupS of T be defined by
the n × n integral matrixM of positive determinant. Then basis vectors ofS written as
row vectorsEs := (s1, s2, . . . , sn) are defined as integral linear combinations of then basis
vectorsEt := (t1, t2, . . . , tn) of T by

Es = EtM. (1)

The basis vectorsEt of T are arbitrary but once chosen, they arefixed. The determinant of
M equals the index ofS in T. With respect to the basisEt, any element ofS is represented
by a column vector which is an unique integral linear combination of the columns ofM.
The subset ofZn generated by the addition of columns ofM overZ is a group isomorphic
to S and for convenience we shall identifyS with this subset. We show thatS may be
defined by a (canonical) triangular integral matrixFM which is column-equivalent to the
original integral matrixM:

FM =



Dn 0 0 · · · 0 0 0

En−1,n Dn−1 0 · · · 0 0 0

En−2,n En−2,n−1 Dn−2 · · · 0 0 0
...

...
...

. . .
...

...
...

E3,n E3,n−1 E3,n−2 · · · D3 0 0

E2,n E2,n−1 E2,n−2 · · · E2,3 D2 0

E1,n E1,n−1 E1,n−2 · · · E1,3 E1,2 D1


(2)

where 16 Dj , j = n, n − 1, . . . ,2, 1, and 06 Ej,i 6 Dj − 1, i = n, n − 1, . . . , j + 1,
j = n−1, n−2, . . . ,2, 1. For further details, like Smith normal form, which we do not need
to invoke here, the reader is referred for instance to the book by Pohst and Zassenhaus [12]
or that by Fuchs [9].

To prove this we exploit the Euclidean algorithm to find the greatest common divisor
(a, b) of two positive integersa, b. We adopt the convention thatMi,j denotes the
current value in theith row andj th column ofM asM is reduced step by step to the
column-equivalent triangular formFM . Each step is an elementary column operation of
the following types: (i) interchange of two columns, (ii) change of the sign of a column,
(iii) adding (subtracting) one column to (from) another column. The sign of the determinant
of M is changed by these operations at most. There is no need to keep track of changes of
sign since both the initialM and the final canonical formFM have positive determinant.

Consider the first row ofM . LetM1,j denote the first non-zero element in the first row
for somej = 1, 2, . . . , n. This element must exist since detM is not zero. Ifj > 1 then
interchange the first andj th columns. IfM1,1 is less than zero then change the sign of the
first column. If there are no more non-zero elements in the first row then it possesses the
desired canonical form. Otherwise letM1,k denote the next non-zero element in the first
row for somek = 2, 3, . . . , n. If k > 2 then interchange the second andkth columns. If
M1,2 is less than zero then change the sign of the second column. IfM1,1 > M1,2 then
interchange the first and second columns. Leta = M1,1 andb = M1,2. We now apply the
Euclidean algorithm to the pair of positive integersa, b wherea < b to find the greatest
common divisor(a, b) of a andb.
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(A) Continually subtract the first column from the second column until eitherM1,2 = 0
or M1,1 > M1,2. In the latter case interchange the first and second columns and repeat (A).
Continue untilM1,2 = 0 in which case(a, b) = M1,1. The well-ordering principle for the
integers guarantees that(a, b) is found after a finite number of steps. Repeat the above for
all non-zero elements in the first row to giveM1,k = 0 for k = 2, 3, . . . , n. The final value
of M1,1 = D1 is the greatest common divisor of all the non-zero elements in the first row
of the initial form ofM.

Then−1 elementsM2,k, k = 2, 3, . . . , n in the second row are treated in the same way
to yield M2,2 = D2 with D2 > 1 is the greatest common divisor of the non-zero elements
M2,k, k = 2, 3, . . . , n. If M2,1 < 0 or M2,1 > M2,2, then the second column is repeatedly
added to or subracted from the first column until 06 M2,1 6 M2,2 − 1, a process which
is completed in a finite number of steps as above. The second row is now in the desired
canonical form. The above process is repeated for the remainingn − 2 rows when the
canonical formFM is obtained.

2.2. Uniqueness of canonical subgroup matrices

The canonical matricesFM are unique in the sense that one and only one canonical matrix
defines the subgroupS. We give a detailed proof for the casen = 3. Let Es and Es′ denote
two bases ofS given by the canonical matricesFM andFM ′:

FM =
 ` 0 0
x m 0
y z n

 (3)

FM ′ =
 `′ 0 0
x ′ m′ 0
y ′ z′ n′

 . (4)

SinceEs and Es′ are bases for the same subgroupS, then Es′ = Es A so thatFM ′ = FM A
where in particularA ∈ GL(3,Z) must hold:

A =
 a b c

d e f

g h i

 . (5)

It follows immediately from the triangular form ofFM andFM ′ that b = c = f = 0 so
thatA is triangular. Also the index ofS in T coincides with detFM = detFM ′ = `mn =
`′m′n′. Therefore(`a)(me)(ni) = `′m′n′ implies thataei = 1. Also ` > 0, m > 0, n > 0,
`′ > 0, m′ > 0, n′ > 0 implies thata > 0, e > 0, i > 0. Thereforea = e = i = 1 and
` = `′, m = m′, n = n′. Now considering the subdiagonal entriesx ′, y ′, z′ in FM ′ we
havex ′ = x +md, where 06 x, x ′ < m. Therefore|x ′ − x| < m andm|d| = |x ′ − x|. So
m|d| < m which implies thatd = 0 asm > 0. Similarly we find thatg = h = 0. ThusA
is the unit matrix and thereforeFM andFM ′ are identical. A similar proof can be given
for arbitrary finiten.

2.3. Classification of canonical matrices

The determinant detFM of the canonical matrixFM stated in (2) is given by the product
of the diagonal elements. Therefore detFM = DnDn−1 · · ·D2D1 =: D. The natural
question arises: how many canonical matricesF(D | n) ∈ Z+ of ordern are there of given
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determinantD? The answer to this combinatorical question is quite straightforward. Let
D = DnDn−1 · · ·D2D1 so thatD is factorized into anorderedset ofn factors, respectively.

Consider now the number of different canonical matrices that possess this ordered set
of n factors down the main diagonal. These matrices differ by the different possible values
of the independent sub-diagonal elementsEj,i which are constrained by 06 Ej,i 6 Dj − 1
where i = n, n − 1, . . . , j + 1 andj = n − 1, n − 2, . . . ,2, 1. In the j th row, counting
from below, there aren− j independent elements with each taking all values in the range
0 6 Ej,i 6 Dj − 1. Thej th row therefore contributesDn−j

j different matrices. The total
number of different matrices arising from the given ordered factorizationDnDn−1 · · ·D2D1

of D is then

G(Dn,Dn−1, . . . , D2,D1) := (Dn)
0(Dn−1)

1 · · · (D2)
n−2(D1)

n−1. (6)

Now let π(Dn,Dn−1, . . . , D2,D1) denote a distinct permutation of then factors
Dn,Dn−1, . . . , D2,D1. Clearly permuting the factors, permutes the elements down the
main diagonal, which leaves the determinant unchanged. Thus, taking all possible distinct
sequences of then factorsDn,Dn−1, . . . , D2,D1, into account we have the total number of
distinct matrices arising from this set of factors ofD is

H(Dn,Dn−1, . . . , D2,D1)

:=
∑

all distinct permutations of{Dn,Dn−1, . . . , D2,D1}
G(π(Dn,Dn−1, . . . , D2,D1)). (7)

Finally, we sumH(Dn,Dn−1, . . . , D2,D1) over all possible distinct un-ordered sets{
Dj,Dk, . . . , D`

}
of admissible factorsDj : j = 1, 2, . . . , n of D:

F(D | n) :=
∑

all distinct un-ordered sets of factorsDn,Dn−1, . . . , D2,D1

H(Dn,Dn−1, . . . , D2,D1). (8)

2.4. Example

We consider the non-trivial exampleD = 24 for n = 3. The factors of 24 are:
1, 2, 3, 4, 6, 8, 12, 24. There are six distinct un-ordered sets of three factors whose product
is 24:

(a) {1, 1, 24} H(a) = 601

(b) {2, 2, 6} H(b) = 104

(c) {1, 2, 12} H(c) = 498

(d) {1, 3, 8} H(d) = 348

(e) {1, 4, 6} H(e) = 302

(f ) {2, 3, 4} H(f ) = 162.

(9)

For the first two sets there are three distinct permutations, whereas there are six distinct
permutations of each or the remaining sets. Simple calulation reveals the values ofH(n)

with n = a, b, c, d, e, f which are listed above so thatF(D | n) = F(24| 3) = 2015.

2.5. Classification of all subgroups of finite index

The above classification of all canonical matrices of ordern according to the value of the
determinantD immediately allows the classification of all subgroupsS of index D of a
free Abelian groupT of rankn. This follows from the fact that, given an arbitrary butfixed
basisEt in T, each and every subgroupS of finite indexD in T is defined once and once
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only by one of theF(D | n) canonical matricesFM which gives a basisEs = Et FM of S.
A different choice of basis inT will result in the same set of subgroupsS, but arranged in
a different order.

3. Intersection groups

3.1. Intersection group of two subgroups

We begin by considering the casen = 3. Let T denote a translation group of rank 3 and
let T1, T2 denote two subgroups defined by the canonical integral matricesFM1 andFM2,
where a canonical integral matrixFM has the triangular form:

FM =
 ` 0 0
x m 0
y z n

 16 `,m, n 06 x 6 m− 1 06 y, z 6 n− 1. (10)

We claim that theuniversal subgroupU(T1, T2) associated with the two subgroupsT1 and
T2 is defined by the diagonal canonical matrix (where [a, b] denotes the least common
multiple of a andb):

FM (U) =

 [`1m1n1, `2m2n2] 0 0

0 [m1n1, m2n2] 0

0 0 [n1, n2]

 . (11)

Note that the indexI (U) of U(T1, T2) in T, which is the determinant ofFM (U), is given
by

I (U) = [`1m1n1, `2m2n2][m1n1, m2n2][n1, n2]. (12)

Note also thatFM (U) is independentof the sub-diagonal entriesxi, yi, zi , i = 1, 2, inFM i

and it is in this sense thatFM (U) and the corresponding groupU(T1, T2) is universal. If
it can be shown thatU(T1, T2) is a subgroup ofT1 and T2 then sinceU(T1, T2) is also a
subgroup (proper or improper) of the intersection groupT1 ∩ T2 of T1 and T2, then the
indexI (T1∩T2) of the intersection groupT1∩T2 will be bounded above by the indexI (U)
of U(T1, T2) in T. The diagonal embedding of the groupT in the (external) direct sum of
T
/

T1 + T
/

T2 provides another upper bound on the indexI (T1 ∩ T2) of the intersection
groupT1 ∩ T2. The kernel of this embedding is exactlyT1 ∩ T2 and soI (T1 ∩ T2) is also
bounded above by the product of the indices ofT1 andT2. Therefore we have

I (T1 ∩ T2) 6 min
{
I (U), I (T1) ∗ I (T2)

}
. (13)

The generalization of the above result to arbitrary finite rankn is obvious.

Rank 1. For this case, there is almost nothing to prove: the intersection group of two
subgroups defined by the two 1× 1 matrices [n1] and [n2] with n1, n2 ∈ Z+, is defined by
the the 1× 1 matrix [[n1, n2]]. Here the lower and upper bounds of the index coincide.

Rank 2. Thus we have

FM1 =
[
m1 0
z1 n1

]
(14)

FM2 =
[
m2 0
z2 n2

]
(15)
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andFM (U), the canonical matrix of theuniversal subgroup, is given by

FM (U) =
[

[m1n1, m2n2] 0

0 [n1, n2]

]
. (16)

We need to show thatU is a subgroup of bothT1 andT2. We can do this if we can show
that the column vectors ofFM (U) are integral linear combinations of the column vectors
of FM1 andFM2, respectively. We apply the argument toFM1 and a similar argument
applies toFM2 as well. It is clear that asn1 divides [n1, n2] then the second column of
FM (U) is an integral multiple of the second column ofFM1. Next, consider the first
column ofFM (U). For convenience letm3 = [m1n1, m2n2]. Now m3 = p1m1n1, where
p1 is integral, so that[

m3

0

]
= p1n1

[
m1

z1

]
− z1p1

[
0
n1

]
. (17)

So the first column ofFM (U) is expressible as an integral linear combination of the columns
of FM1. ThusU is a subgroup ofT1 and by a similar argument the same is true forT2.

Rank n. The proof is by induction onn where(n > 1). Let T denote a translation group of
rankn and letT1, T2 denote two subgroups defined by the canonical integral matricesFMn

1
andFMn

2, where a canonical integral matrix has the triangular form as given in (2). Define
the subgroupUn(T1, T2) associated with the two subgroupsT1 and T2 by the following
diagonal canonical matrixFMn(U) where the diagonal/off-diagonal elements ofFMn

1 and
FMn

2 are denoted by the subscripted symbolsD/E andF/G, respectively:

FMn(U) =


5n 0 · · · 0 0
0 5n−1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 52 0
0 0 · · · 0 51

 (18)

5j = [D1D2 · · ·Dj, F1F2 · · ·Fj ] j = 1, 2, . . . , n. (19)

Let the propositionP(n) be that all the columns ofFMn(U) are integral linear
combinations of the columns of (i)FMn

1 and (ii) FMn
2. Assume thatP(n) is true for

n = k, and considerP(n) for n = k + 1. ConsiderFM k+1(U) given in (18) by setting
n = k + 1. Observe that apart from the zero entry in the first row of each column, the last
k columns ofFM k+1(U) are identical to thek columns ofFM k(U), and the same is true
for the pairsFM k+1

1 , FM k
1 andFM k+1

2 , FM k
2.

By the induction assumption, thek columns ofFM k(U) are integral linear combinations
of (i) FM k

1 and (ii) FM k
2. Adding a zero entry at the head of each of the columns of

FM k(U), FM k
1 and FM k

2, it follows that each of the lastk columns ofFM k+1(U) is
an integral linear combination of the lastk columns of (i)FM k+1

1 , and (ii) FM k+1
2 . It

only remains therefore to prove that the first column ofFM k+1(U) is an integral linear
combination of the columns of (i)FM k+1

1 , and (ii) FM k+1
2 . Consider the first column

of FM k+1
1 . (The same argument applies to the first column ofFM k+1

2 .) This column is
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(Dk+1, Ek,k+1, Ek−1,k+1, . . . , E2,k+1, E1,k+1)
T. Consider the expression

1

Pk+1



5k+1

0
0
...

0
0


= Xk+1



Dk+1

Ek,k+1

Ek−1,k+1
...

E2,k+1

E1,k+1


+Xk



0
Dk

Ek−1,k
...

E2,k

E1,k


+ · · · +X1



0
0
0
...

0
D1


(20)

where the integerPk+1 is determined by

5k+1 = Pk+1D1D2 · · ·DkDk+1. (21)

We need to show that the coefficientsXj , j = k + 1, k, . . . ,2, 1 in (20) are all integral.
Whenj = k + 1, then (20) and (21) imply

Pk+1D1D2 · · ·DkDk+1 = 5k+1 = Pk+1Xk+1Dk+1 (22)

so that

Xk+1 = D1D2 · · ·Dk ∈ Z (23)

is integral. Note thatD`|Xk+1, ` = 1, 2, . . . , k − 1, k. Whenj = k, then (20) implies that

0= Xk+1Ek,k+1+XkDk. (24)

Equations (23) and (24) imply thatXk is integral sinceDk|Xk+1. Note thatD`|Xk,
` = 1, 2, . . . , k − 2, k − 1. Whenj = k − 1, then (20) implies that

0= Xk+1Ek−1,k+1+XkEk−1,k +Xk−1Dk−1 (25)

and asDk−1|Xj , j = k, k + 1, then Xk−1 is integral. Note thatD`|Xk−1, ` =
1, 2, . . . , k − 3, k − 2. From thej th row of (20) we obtain

0= Xk+1Ej,k+1+XkEj,k + · · · +Xj+1Ej,j+1+XjDj j = k + 1, k, k − 1, . . . ,2, 1.

(26)

Now asDj |X`, ` = j +1, j +2, . . . , k, k+1 thenXj is integral. Therefore, from (20), the
first column ofFM k+1(U), namely(5k+1, 0, 0, . . . ,0)T, is an integral linear combination of
thek+1 columns ofFM k+1

1 . We have therefore shown that all the columns ofFM k+1(U)

are integral linear combinations of the columns ofFM k+1
1 . By a similar argument all the

columns ofFM k+1(U) are integral linear combinations of the columns ofFM k+1
2 too.

Therefore ifP(k) is true thenP(k + 1) is true also. We have established thatP(n) is true
for n = 2 (andP(1) is trivially true) so thatP(n) is true for alln > 1. Note that we cannot
appeal to the truth ofP(1) as the starting point instead ofP(2) since forn = 1, FM1

1,
FM1

2, FM1(U) lose their triangular structure which is essential to the argument.

Corollaries. It follows that
(FMn

1

)−1 FMn(U) and
(FMn

2

)−1 FMn(U) are integral
matrices which define the basis vectors ofFMn(U) as integral linear combinations of
the basis vectors ofT1 and T2 respectively. IfT2 = T then all subgroupsT1, with the
diagonal elements fixed but with varying off-diagonal elements, are supergroups ofU where
FM (U) = diag(5n,5n−1, . . . ,52,51) where5j = D1D2 · · ·Dj with j = 1, 2, . . . , n.
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3.2. Construction of intersection groups

Next we describe an algorithm for constructing the canonical matrixFMn(T1 ∩ T2) of the
intersection groupT1 ∩ T2 of two subgroupsT1 andT2 of a free Abelian groupT of rank
n, where the subgroups are defined by canonical matricesFMn

1, FMn
2 respectively. We

consider in detail the casesn = 1, 2, 3 which are sufficient to show how the algorithm
generalizes to arbitrary finite higher values ofn.

Rank 1. The intersection groupT1 ∩ T2 of two subgroupsT1 and T2 defined respectively
by the two 1×1 matrices [n1] and [n2] with n1, n2 ∈ Z+, is defined by the the 1×1 matrix
[[n1, n2]].

Rank 2. We are given two canonical matricesFM2
1 andFM2

2:

FM2
1 =

[
m1 0
z1 n1

]
(27)

FM2
2 =

[
m2 0
z2 n2

]
(28)

where 16 mi, ni , and 06 zi 6 ni − 1, i = 1, 2, and we wish to find the canonical matrix
FM2(T1 ∩ T2) of the intersection groupT1 ∩ T2. Let

FM2(T1 ∩ T2) =
[
m3 0
z3 n3

]
(29)

where 16 m3, n3, and 06 z3 6 n3 − 1. Consider the last column ofFM2
1, FM2

2 and
FM (T1 ∩ T2) in which the entry in the first row is zero so that these columns represent
elements in a subgroup ofT of rank 1. It follows immediately from the discussion above for
Rank 1 thatn3 = [n1, n2]. Consider next the first column ofFM2

1, FM2
2 andFM (T1 ∩ T2).

Take the special casez1 = z2 = 0 so that these columns represent elements in another
subgroup ofT of rank 1. As above this implies thatm3 = [m1, m2] and z3 = 0 so that
the indexI (T1 ∩ T2) = m3n3 = [m1, m2][n1, n2]. Note that this index divides the index
[m1n1, m2n2][n1, n2] of the universal subgroupU(T1, T2) as required. Finally consider the
general case where not bothz1 and z2 are zero. The first column ofFM (T1 ∩ T2) is by
definition an integral linear combination of (i) the columns ofFM2

1 and (ii) the columns of
FM2

2. So [
m3

z3

]
= m3

m1

[
m1

z1

]
+ p1

[
0
n1

]
m3/m1 ∈ Z p1 ∈ Z[

m3

z3

]
= m3

m2

[
m2

z2

]
+ p2

[
0
n2

]
m3/m2 ∈ Z p2 ∈ Z

(30)

and 06 z3 6 n3 − 1 = [n1, n2] − 1. Or equivalentlyn1 divides (z3 − (m3/m1)z1) and
n2 divides (z3 − (m3/m2)z2) for somez3 in 0 6 z3 6 n3 − 1 = [n1, n2] − 1. A non-
trivial consequence of the above is thatm3 must be a common multiple of bothm1 and
m2 and therefore is bounded below by [m1, m2]. If a solution for z3 in (30) exists when
m3 = [m1, m2] then the lower bound on the indexI (T1 ∩ T2) = m3n3 = [m1, m2][n1, n2]
is attained. From equation (13) it follows thatm3 is bounded above bymmax

3 , where

mmax
3 = min

{
[m1n1, m2n2], (m1n1)(m2n2)/[n1, n2]

}
. (31)

A solution for z3 in (30) must exist form3 = p[m1, m2], for some integralp, p =
1, 2, . . . , pmax, where

pmax= mmax
3 /[m1, m2] = min

{
[m1n1, m2n2]/[m1, m2], (m1, m2)(n1, n2)

}
(32)
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using ab = (a, b)[a, b] where (a, b) denotes the highest common factor ofa and b.
Furthermore, the uniqueness ofT1∩T2 implies that if a solution forz3 is found forp = p′
then no other solution forz3 exists for this valuep of p. As p is increased from unity to
pmax either no solution forz3 exists or precisely one solution exists (forp = p′) whereupon
the search stops and the intersection matrix is found and has determinantp′[m1, m2][n1, n2].
The upper bound on the index is attained whenp′ = pmax so that

I (T1 ∩ T2) = min
{
[m1n1, m2n2][n1, n2], (m1n1)(m2n2)

}
. (33)

Rank 3. We are given two canonical matricesFM3
1 andFM3

2:

FM3
1 =

 `1 0 0
x1 m1 0
y1 z1 n1

 (34)

FM3
2 =

 `2 0 0
x2 m2 0
y2 z2 n2

 (35)

where 16 `i,mi, ni , 06 xi 6 mi − 1, 06 yi, zi 6 ni − 1, i = 1, 2, and we wish to find
the canonical matrixFM3(T1 ∩ T2) of the intersection groupT1 ∩ T2. Let

FM3(T1 ∩ T2) =
 `3 0 0
x3 m3 0
y3 z3 n3

 (36)

where 16 `3, m3, n3, 06 x3 6 m3−1, 06 y3, z3 6 n3−1. The second and third columns
of FM3(T1 ∩ T2) are found as described in the rank 2 case above. It remains to describe
how the elements of the first column are found. The first column ofFM3(T1 ∩ T2) is by
definition an integral linear combination of (i) the columns ofFM3

1 and (ii) the columns of
FM3

2. So `3

x3

y3

 = `3

`1

 `1

x1

y1

+ q1

 0
m1

z1

+ r1
 0

0
n1

 (`3/`1), q1, r1 ∈ Z

 `3

x3

y3

 = `3

`2

 `2

x2

y2

+ q2

 0
m2

z2

+ r2
 0

0
n2

 (`3/`2), q2, r2 ∈ Z.
(37)

Finally, 06 x3 6 m3−1= p′[m1, m2]−1, 06 y3 6 n3−1= [n1, n2]−1, where the value
of p′ is found from the calculation ofz3 (see rank 2 above). A non-trivial consequence
of the above is that̀ 3 must be a common multiple of both̀1 and `2 and therefore is
bounded below by [̀1, `2]. If a solution forx3 andy3 in (37) exists wheǹ 3 = [`1, `2] and
p′ = 1 then the lower bound on the indexI (T1 ∩ T2) = `3m3n3 = [`1, `2][m1, m2][n1, n2]
is attained. From equation (13) it follows that`3 is bounded above bỳmax

3 , where

`max
3 = min

{
[`1m1n1, `2m2n2], (`1m1n1)(`2m2n2)/(p

′[m1, m2][n1, n2])
}
. (38)

A solution for x3 and y3 in (37) must exist for`3 = q[`1, `2], for some integralq,
q = 1, 2, . . . , qmax, where

qmax= `max
3 /[`1, `2] = min

{
[`1m1n1, `2m2n2]/[`1, `2], (`1, `2)(m1, m2)(n1, n2)/p

′}. (39)

Furthermore, the uniqueness ofT1 ∩ T2 implies that if a solution forx3 and y3 is found
for q = q ′ then no other solution forx3 and y3 exists for this valueq ′ of q. As q is
increased from unity toqmax either no solution forx3 andy3 exists or precisely one solution
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exists (forq = q ′) whereupon the search stops and the intersection matrix is found and has
determinantq ′[`1, `2]p′[m1, m2][n1, n2]. The upper bound on the index is attained when
p′ = pmax andq ′ = qmax so that

I (T1 ∩ T2) = min
{
[`1m1n1, `2m2n2][m1n1, m2n2][n1, n2], (`1m1n1)(`2m2n2)

}
. (40)

Rank n. The generalization of the above to higher values ofn, namely(n > 3), is natural
and straightforward, and we leave the interested reader to carry this out for himself.

4. Union groups

4.1. Union group of two subgroups

We define the union groupT3 of two subgroupsT1 and T2 of T as that subgroup ofT
generated byT1 and T2. Let T1 and T2 be defined by canonical matricesFM1 andFM2

of the form given by equation (2). We need to find then× n canonical matrixFM3 which
determinesT3. This is done by employing the Euclidean algorithm, as in subsection 2.1,
to reduce then× 2n rectangular matrix

[FM1,
FM2

]
by elementary column operations to

the form
[FM3,Ø

]
, where Ø here denotes then× n zero matrix.

For simplicity we illustrate the procedure for the casen = 2. For higher values ofn
one simply repeats the procedure forn = 2. We use elementary column operations as in
Section 2.1 on the 2× 4 matrix

[FM1,
FM2

]
:[

`1 0 `2 0
x1 m1 x2 m2

]
. (41)

This is column equivalent to:[
`1 `2 0 0
x1 x2 m1 m2

]
. (42)

By using the Euclidean algorithm to find the greatest common divisor(a, b) of two integers
a, b, the first two columns of the above are column equivalent to[

(`1, `2) 0
x ′1 x ′2

]
(43)

and the third and fourth columns are column equivalent to[
0 0

(m1, m2) 0

]
. (44)

Therefore
[FM1,

FM2
]

is column equivalent to[
(`1, `2) 0 0 0

x ′1 x ′2 (m1, m2) 0

]
. (45)

Now use the Euclidean algorithm again on the second and third columns which shows that[FM1,
FM2

]
is column equivalent to[
(`1, `2) 0 0 0

x ′1 (x ′2, (m1, m2)) 0 0

]
. (46)

Note that(x ′2, (m1, m2)) divides(m1, m2). Finally reduce the first two columns to canonical
form by elementary column operations:[

(`1, `2) 0 0 0

x ′3 (x ′2, (m1, m2)) 0 0

]
(47)
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where 06 x ′3 6 (x ′2, (m1, m2))− 1. The canonical formFM3 is then[
(`1, `2) 0

x ′3 (x ′2, (m1, m2))

]
. (48)

A corollary of the above is that 16 detFM3 6 (`1, `2)(m1, m2).
The procedure for rankn is essentially a repetition of the above, starting with the

first column of FM1 and the first column ofFM2. We find that 16 detFM3 6
(Dn, Fn)(Dn−1, Fn−1) · · · (D1, F1). As a final remark we note that it is not possible to
find a greater lower bound than unity on detFM3 which depends only on the diagonal
elements ofFM1 andFM2. This can be seen by considering

FM1 =
[

1 0
x m

]
FM2 =

[
1 0
0 m

]
. (49)

If x is co-prime tom thenFM3 is the two-dimensional unit matrix.
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